Problem 8C,2

Suppose $\{a_k\}_{k\in\Gamma}$ is a family in \mathbb{R} and $a_k \geq 0$ for each $k \in \Gamma$. Prove that the unordered sum $\sum_{k\in\Gamma} a_k$ converges if and only if

$$\sup\{\sum_{j\in\Omega}a_j:\Omega\ is\ a\ finite\ subset\ of\Gamma\}<\infty.$$

Furthermore, prove that if the sum $\sum_{k\in\Gamma} a_k$ converges then it equals the supremum in the above.

Proof. Denote the supremum by A. If $A < \infty$, for any $\epsilon > 0$, by definition of supremum we can find a finite subset Ω of Γ , such that

$$A - \epsilon < \sum_{j \in \Omega} a_j \le A.$$

Then for any finite subset Ω' ocntaining Ω , we have

$$A-\epsilon < \sum_{j\in\Omega} a_j \leq \sum_{j\in\Omega'} a_j \leq A$$

By definition 8.53, this means that the unordered sum $\sum_{k\in\Gamma} a_k$ converges and it equals A. Conversely, assume that the unordered sum $\sum_{k\in\Gamma} a_k$ converges, by definition 8.53, we can find $B \in (0,\infty)$ and finite subset Ω such that for any finite subset Ω' containing Ω

$$|B - \sum_{j \in \Omega'} a_j| < 1$$

We claim $A \leq B + 1$. In fact, for any finite subset $\Omega_1, \Omega \bigcup \Omega_1$ is also a finite subset and contains Ω . Thus

$$\sum_{j \in \Omega_1} a_j \le \sum_{j \in \Omega \bigcup \Omega_1} a_j \le B + 1$$

This proves the claim and thus finishes the proof. \Box

Problem 8C,6

Suppose $\{a_k\}_{k\in\Gamma}$ is a family in \mathbb{R} . Prove that the unordered sum $\sum_{k\in\Gamma} a_k$ converges if and only if $\sum_{k\in\Gamma} |a_k| < \infty$.

Proof. If $\sum_{k \in \Gamma} |a_k| < \infty$, for any positive integer k the set $\{a_k : |a_k| \in (\frac{1}{k+1}, \frac{1}{k}]\}$ must be a finite set. Thus $\{a_k : a_k \neq 0\}$ is a countable set. Thus the summation $\sum_{k \in \Gamma} a_k$ is in fact a countable summation. So by standard result, we know it converges.

Conversely, assume that the unordered sum $\sum_{k \in \Gamma} a_k$ converges. By definition 8.53 and argues as in problem 8C,2,

$$-\infty < \inf\{\sum_{j\in\Omega}a_j: \Omega \text{ is a finite subset of}\Gamma\} \le \sup\{\sum_{j\in\Omega}a_j: \Omega \text{ is a finite subset of}\Gamma\} < \infty.$$

But if $\sum_{k \in \Gamma} |a_k| = \infty$, then one can obvioully show that either $\inf\{\sum_{j \in \Omega} a_j : \Omega \text{ is a finite subset of } \Gamma\} = -\infty$ or $\sup\{\sum_{j \in \Omega} a_j : \Omega \text{ is a finite subset of } \Gamma\} = \infty$. This implies that in fact $\sum_{k \in \Gamma} |a_k| < \infty$. \Box

Problem 8C,12

Prove the converse of Parseval's identity: if $\{e_k\}_{k\in\Gamma}$ is an orthonormal family in Hilbert space V, and for any $f \in V$,

$$||f||^2 = \sum_{k \in \Gamma} |\langle f, e_k \rangle|^2,$$

then $\{e_k\}_{k\in\Gamma}$ is an orthonormal basis.

Proof. Note that one can easily check that $||f - \sum_{k \in \Gamma} \langle f, e_k \rangle e_k||^2 = ||f||^2 - \sum_{k \in \Gamma} |\langle f, e_k \rangle |^2$. Then by assumption, the right hand side is zero and thus $f = \sum_{k \in \Gamma} \langle f, e_k \rangle e_k$. \Box

Problem 8C,24

The Dirichlet space \mathcal{D} is defind to the set of analytic function $f: D \to \mathbb{C}$ such that

$$\int_{D} |f^{'}|^{2} d\lambda_{2} < \infty.$$

For $f, g \in \mathcal{D}$, define $\langle f, g \rangle = f(0)g(0) + \int_{\mathcal{D}} f' \bar{g'} d\lambda_2$

- Prove that \mathcal{D} is a Hilbert space.
- Show that if $w \in D$, then $f \to f(w)$ is bounded linear functional on \mathcal{D} .
- Find an orthonomal basis of \mathcal{D} .
- Suppose $f \in \mathcal{D}$ has the Taylor series $f(z) = \sum_{k=0}^{\infty} a_k z^k$, find a formula for ||f|| in terms of a_0, a_1, \ldots
- Suppose $w \in D$, find an explicit formula for $\Gamma_w \in \mathcal{D}$ such that for all $f \in \mathcal{D}$,

$$f(w) = < f, \Gamma_w >$$

Proof. • Note that for any analytic function $f: D \to \mathbb{C}$, from the mean value property (which holds in generally for harmonic functions), we can get the following estimate:

$$|f(z)|^2 \le \frac{1}{\sqrt{\pi}(1-|z|)} \int_D |f|^2 d\lambda_2$$

From the above estimate, we know that L_2 convergence of analytic functions implies the uniform convergence in every compact subset. From this fact, the completeness of D follows easily.

- This also follows the estimate above and definition.
- Normalize $1, z, z^2, \ldots$ to e_0, e_1, e_2 such that $||e_k|| = 1$ for any nonnegative integer k. Then use Taylor series, these form a basis. In fact

$$e_0 = 1, e_k = \frac{z^k}{\sqrt{k\pi}} \ k \ge 1$$

• Use the result in 3, one can easily calculate

$$||f||^2 = |a_0|^2 + \sum_{k=1}^{\infty} |a_k|^2 k\pi$$

• Obviously such Γ_w is unique by Riesz representation theorem. If w = 0, then $\Gamma_0 = 1$. Assume now $w \neq 0$. Assume that $\Gamma_w(z) = \sum_{k=0}^{\infty} a_k z^k$. Take the test function f to be $z^k, k > 0$, we find that

$$w^k = \langle z^k, \Gamma_w \rangle = \langle z^k, a_k z^k \rangle = \bar{a_k} \pi k$$

Thus for k > 0, $a_k = \frac{\bar{w}^k}{\pi k}$; aimilarly, $a_0 = 1$.

Problem 9A,3

Suppose ν is a complex measure on a measurable space (X, S). Prove that $|\nu(X)| = \nu(X)$ if and only if ν is a positive measure.

Proof. Obviouly if ν is a positive measure, then $|\nu(X)| = |\nu|(X)$ by definition. Conversely, assume $|\nu(X)| = \nu(X)$. We can decompose $\nu = \nu_1 + i\nu_2$ as in the textbook. If both ν_1, ν_2 are nonzero, then one can find a measurable set $A \subset X$ such that $\nu(A) < |\nu|(A)$ strictly. And since we always have $\nu(X - A) \leq |\nu|(X - A)$. Thus $|\nu(X)| > \nu(X)$. This is a contradiction and so one of the ν_1, ν_2 must be zero. By assumption, obviouly we have that $\nu_2 = 0, \nu = \nu_1$ is a positive measure. \Box

Problem 9A,4

Suppose ν is a complex measure on a measurable space (X, S). Prove that if $E \in S$, then

$$|\nu|(E) = \sup\{\sum_{k=1}^{\infty} |\nu(E_k)| : E_1, E_2, \dots \text{ is disjoint sequence in } S \text{ such that } E = \bigcup_{k=1}^{\infty} E_k\}$$

Proof. Denote the right hab=nd side by A(E). Then obviously by definition, $\nu|(E) \leq A(E)$. Conversely, for any disjoint $E = \bigcup_{k=1}^{\infty} E_k$,

$$\sum_{k=1}^{\infty} |\nu(E_k)| = \lim_{N \to \infty} \sum_{k=1}^{N} |\nu(E_k)| \le \lim_{N \to \infty} |\nu|(E) = |\nu|(E)$$

Then take the supremum over all such decomposition, we find $A(E) \leq |\nu|(E)$. This completes the proof.

Problem 9A,11

For (X,S) a measurable space and $b \in X$, define a finite positive measurable δ_b on (X,S) by $\delta_b(E) = 1$ if $b \in E$; $\delta_b(E) = 0$ if $b \notin E$.

- Show that if $b, c \in X$, then $\|\delta_b + \delta_c\| = 2$.
- Give an example of measurable space (X, S) and $b, c \in X$ such that $\|\delta_b \delta_c\| \neq 2$.
- *Proof.* In definition 9.8, just take $E_1 = X$ other sets to be empty. This easily show that $\|\delta_b + \delta_c\| \ge 2$. And it is trivial that $\|\delta_b + \delta_c\| \le 2$. So the result follows.
 - Just take X to be any set contains more than two elements and S contains only the empty set and X itself. Take any $b, c \in X$. Then $\|\delta_b \delta_c\| = 0$.