
Hanbing Fang Homework 9 MAT324: Real Analysis

Problem 8C,2
Suppose {ak}k∈Γ is a family in R and ak ≥ 0 for each k ∈ Γ. Prove that the unordered sum

∑
k∈Γ ak

converges if and only if
sup{

∑
j∈Ω

aj : Ω is a finite subset ofΓ} < ∞.

Furthermore, prove that if the sum
∑

k∈Γ ak converges then it equals the supremum in the above.

Proof. Denote the supremum by A. If A < ∞, for any ϵ > 0, by definition of supremum we can find a finite
subset Ω of Γ, such that

A− ϵ <
∑
j∈Ω

aj ≤ A.

Then for any finite subset Ω
′ ocntaining Ω, we have

A− ϵ <
∑
j∈Ω

aj ≤
∑
j∈Ω′

aj ≤ A

By definition 8.53, this means that the unordered sum
∑

k∈Γ ak converges and it equals A. Conversely,
assume that the unordered sum

∑
k∈Γ ak converges, by definition 8.53, we can find B ∈ (0,∞) and finite

subset Ω such that for any finite subset Ω
′ containing Ω

|B −
∑
j∈Ω′

aj | < 1

We claim A ≤ B + 1. In fact, for any finite subset Ω1, Ω
∪
Ω1 is also a finite subset and contains Ω. Thus∑

j∈Ω1

aj ≤
∑

j∈Ω
∪

Ω1

aj ≤ B + 1

This proves the claim and thus finishes the proof.

Problem 8C,6
Suppose {ak}k∈Γ is a family in R. Prove that the unordered sum

∑
k∈Γ ak converges if and only if∑

k∈Γ |ak| < ∞.

Proof. If
∑

k∈Γ |ak| < ∞, for any positive integer k the set {ak : |ak| ∈ ( 1
k+1 ,

1
k ]} must be a finite set. Thus

{ak : ak ̸= 0} is a countable set. Thus the summation
∑

k∈Γ ak is in fact a countable summation. So by
standard result, we know it converges.

Conversely, assume that the unordered sum
∑

k∈Γ ak converges. By definition 8.53 and argues as in
problem 8C,2,

−∞ < inf{
∑
j∈Ω

aj : Ω is a finite subset ofΓ} ≤ sup{
∑
j∈Ω

aj : Ω is a finite subset ofΓ} < ∞.

But if
∑

k∈Γ |ak| = ∞, then one can obviouly show that either inf{
∑

j∈Ω aj : Ω is a finite subset ofΓ} = −∞
or sup{

∑
j∈Ω aj : Ω is a finite subset ofΓ} = ∞. This implies that in fact

∑
k∈Γ |ak| < ∞.

Problem 8C,12
Prove the converse of Parseval’s identity: if {ek}k∈Γ is an orthonormal family in Hilbert space V , and
for any f ∈ V ,

∥f∥2 =
∑
k∈Γ

| < f, ek > |2,

then {ek}k∈Γ is an orthonormal basis.
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Proof. Note that one can easily check that ∥f −
∑

k∈Γ < f, ek > ek∥2 =∥f∥2 −
∑

k∈Γ | < f, ek > |2. Then
by assumption, the right hand side is zero and thus f =

∑
k∈Γ < f, ek > ek.

Problem 8C,24
The Dirichlet space D is defind to the set of analytic function f : D → C such that∫

D

|f
′
|2dλ2 < ∞.

For f, g ∈ D, define < f, g >= f(0) ¯g(0) +
∫
D
f

′
ḡ′dλ2

• Prove that D is a Hilbert space.

• Show that if w ∈ D, then f → f(w) is bounded linear functional on D.

• Find an orthonomal basis of D.

• Suppose f ∈ D has the Taylor series f(z) =
∑∞

k=0 akz
k, find a formula for ∥f∥ in terms of

a0, a1, . . ..

• Suppose w ∈ D, find an explict formula for Γw ∈ D such that for all f ∈ D,

f(w) =< f,Γw >

Proof. • Note that for any analytic function f : D → C, from the mean value property (which holds in
generally for harmonic functions), we can get the following estimate:

|f(z)|2 ≤ 1√
π(1− |z|)

∫
D

|f |2dλ2

From the above estimate, we know that L2 convergence of analytic functions implies the uniform
convergence in every compact subset. From this fact, the completeness of D follows easily.

• This also follows the estimate above and definition.

• Normalize 1, z, z2, . . . to e0, e1, e2 such that ∥ek∥ = 1 for any nonnegative integer k. Then use Taylor
series, these form a basis. In fact

e0 = 1, ek =
zk√
kπ

k ≥ 1

• Use the result in 3, one can easily calculate

∥f∥2 = |a0|2 +
∞∑
k=1

|ak|2kπ

• Obviously such Γw is unique by Riesz representation theorem. If w = 0, then Γ0 = 1. Assume now
w ̸= 0. Assume that Γw(z) =

∑∞
k=0 akz

k. Take the test function f to be zk, k > 0, we find that

wk =< zk,Γw >=< zk, akz
k >= ākπk

Thus for k > 0, ak = w̄k

πk ; aimilarily, a0 = 1.

Problem 9A,3
Suppose ν is a complex measure on a measurable space (X,S). Prove that |ν(X)| = ν(X) if and only
if ν is a positive measure.
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Proof. Obviouly if ν is a positive measure, then |ν(X)| = |ν|(X) by definition. Conversely, assume
|ν(X)| = ν(X). We can decompose ν = ν1 + iν2 as in the textbook. If both ν1, ν2 are nonzero, then
one can find a measurable set A ⊂ X such that ν(A) < |ν|(A) strictly. And since we always have
ν(X − A) ≤ |ν|(X − A). Thus |ν(X)| > ν(X). This is a contradiction and so one of the ν1, ν2 must
be zero. By assumption, obviouly we have that ν2 = 0, ν = ν1 is a positive measure.

Problem 9A,4
Suppose ν is a complex measure on a measurable space (X,S). Prove that if E ∈ S, then

|ν|(E) = sup{
∞∑
k=1

|ν(Ek)| : E1, E2, . . . is disjoint sequence in S such that E =

∞∪
k=1

Ek}

Proof. Denote the right hab=nd side by A(E). Then obviously by definition, ν|(E) ≤ A(E). Conversely, for
any disjoint E =

∪∞
k=1 Ek,

∞∑
k=1

|ν(Ek)| = lim
N→∞

N∑
k=1

|ν(Ek)| ≤ lim
N→∞

|ν|(E) = |ν|(E)

Then take the supremum over all such decomposition, we find A(E) ≤ |ν|(E). This completes the proof.

Problem 9A,11
For (X,S) a measurable space and b ∈ X , define a finite positiev measurable δb on (X,S) by
δb(E) = 1 if b ∈ E; δb(E) = 0 if b /∈ E.

• Show that if b, c ∈ X, then ∥δb + δc∥ = 2.

• Give an example of measurable space (X,S) and b, c ∈ X such that ∥δb − δc∥ ̸= 2.

Proof. • In definition 9.8, just take E1 = X other sets to be empty. This easily show that ∥δb + δc∥ ≥ 2.
And it is trivial that ∥δb + δc∥ ≤ 2. So the result follows.

• Just take X to be any set containg more than two elements and S contains only the empty set and X
itself. Take any b, c ∈ X. Then ∥δb − δc∥ = 0.
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